If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100=49y^2
We move all terms to the left:
100-(49y^2)=0
a = -49; b = 0; c = +100;
Δ = b2-4ac
Δ = 02-4·(-49)·100
Δ = 19600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{19600}=140$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-140}{2*-49}=\frac{-140}{-98} =1+3/7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+140}{2*-49}=\frac{140}{-98} =-1+3/7 $
| 64+-13x2-19=0 | | -2x-4/2=10 | | 100-49y^2=0 | | 5m+7=-23 | | 6x4+-13x2-19=0 | | 3y-6+y+34=5y+30-3y | | 5p+30=p | | x+x+20.4=90 | | k=-18-18+11-18 | | -7m+6=27 | | 2c=2=10 | | 225x2-1=6 | | x+x+134=180 | | 3/4x-2=-7+1/3x | | 3x+15=3(x+5)3x+15=3(x+5) | | 3+x/7=4/8 | | 17x+x=90 | | 26=2+4x | | 25x^2-8=-7 | | 7(w+3)=4+2w | | 3b+5=2(b-1) | | x+5+4x-10=180 | | 2x^2+4x+4=52 | | 5x+x=3+9 | | x-5(x+12)=-12 | | 96-4x=12 | | 3(1-2a)=4-6a | | (5x+10)^0.5=3 | | 2x–(x-1)=8–(3x+3) | | 3.5x5.2=18.2 | | (4.20)n=50.50 | | 8.2x-6.2-7.2x=17 |